
Exam Calculus 2

28 January 2025, 18:15-20:15

The exam consists of 4 problems. You have 120 minutes to answer the questions.
You can achieve 100 points which includes a bonus of 10 points. Calculators, books
and notes are not permitted.

1. [4+8+8=20 Points]

Consider the function f : R2 → R defined as

f(x, y) =

{
x+ y if x · y ≥ 0
x− y if x · y < 0

.

(a) Show that f is continuous at (x, y) = (0, 0).

(b) Show from the definition of directional derivatives that for each unit vector u =
(v, w) ∈ R2, the directional derivative Duf(0, 0) exists.

(c) Is f differentiable at (x, y) = (0, 0)? Give a detailed justification of your answer based
on the definition of differentiability.

2. [5+10+10=25 Points]

Let S ⊂ R3 be the elliptic paraboloid given by the equation

x2 + 2y2 − 6x− z + 10 = 0

which contains the point (x0, y0, z0) = (4, 1, 4).

(a) Find the tangent plane at the point (x0, y0, z0) using the fact that S is the level set
of a suitable function g : R3 → R.

(b) Use the Implicit Function Theorem to show that near the point (x0, y0, z0), the surface
S can be considered to be the graph of a function f of the variables y and z. Compute
the partial derivatives fy and fz at (y0, z0) and show that the tangent plane found in
part (a) coincides with the graph of the linearization of f at (y0, z0).

(c) Use the method of Lagrange multipliers to find the point(s) in S closest to the x-axis.

— please turn over —



3. [6+5+6+3=20 Points]

For the constant a ∈ R, consider the vector field F on R3 given by

F(x, y, z) = (axy − z3) i + (a− 2)x2 j + (1− a)xz2 k , (x, y, z) ∈ R3 ,

(a) Let A = (0, 0, 0) and B = (1, 1, 1), and C be the straight line segment connecting A
to B. Compute the line integral of F along C, i.e.

ˆ
C
F · ds.

(b) Determine a in such a way that the vector field F is conservative.

(c) Determine for the value of a found in part (b) a potential function of F.

(d) Show that the potential function in part (c) can be used to compute the value of the
line integral in part (a) in the case where F is conservative by using the Fundamental
Theorem of Line Integrals.

4. [25 Points]

Let S be the part of the paraboloid z = 9− x2 − y2 contained in the cylinder of radius 3
centered at the z-axis. Suppose S is oriented by the upward pointing normal vector. Let
F : R3 → R3 be the vector field defined as

F(x, y, z) = (2z − y) i + (x+ z) j + (3x− 2y)k

for all (x, y, z) ∈ R3. For this example, very Stokes’ Theorem by computing both sides of
the equality ¨

S
(∇× F) · dS =

˛
∂S

F · ds,

where the orientation on the boundary ∂S is induced by the orientation on S.



Solutions

1. (a) We have f(0, 0) = 0. For all (x, y) ∈ R2, it hols that

0 ≤ |f(x, y)| = |x± y| ≤ |x|+ |y|

where in the last inequality we used the Triangle Inequality. From the Squeezing
Theorem we hence get f(x, y) → 0 for (x, y) → 0 which agrees with f(0, 0). The
function f is hence continues at (x, y) = (0, 0).

(b) Let u = (v, w) ∈ R2 with v2 + w2 = 1. Then for 0 6= h ∈ R,

f(hv, hw)− f(0, 0)

h

=
1

h

{
hv + hw if hv · hw ≥ 0
hv − hw if hv · hw < 0

=
1

h

{
hv + hw if v · w ≥ 0
hv − hw if v · w < 0

=

{
v + w if v · w ≥ 0
v − w if v · w < 0

which does not depend on h. Hence the limit h→ 0 trivially exists and

Duf(0, 0) = lim
h→0

f(hv, hw)− f(0, 0)

h
=

{
v + w if v · w ≥ 0
v − w if v · w < 0

.

(c) According to part (b) we have fx(0, 0) = fy(0, 0) = 1 (choose u = (v, w) = (1, 0) or
u = (v, w) = (0, 1), respectively). So the linearization of f at (x, y) = (0, 0) is given
by

L(x, y) = f(0, 0) + fx(0, 0)(x− 0) + fy(0, 0)(y − 0) = x+ y.

For the differentiability of f at (0, 0), it needs to hold that the limit of

f(x, y)− L(x, y)

‖(x, y)− (0, 0)‖

exists and is 0 for (x, y)→ (0, 0). Filling in f and L we get

f(x, y)− L(x, y)

‖(x, y)− (0, 0)‖
=

1

(x2 + y2)1/2

{
x+ y − (x+ y) if x · y ≥ 0
x− y − (x+ y) if x · y < 0

=
1

(x2 + y2)1/2

{
0 if x · y ≥ 0
−2y if x · y < 0

which does not have a limit for (x, y) → (0, 0). This can be seen, e.g., when x = y,
then the latter equals 0 whereas for y = −x 6= 0, the latter is ±1 depending on the
sign of x. The function f is hence not differentiable at (x, y) = (0, 0).

The function is in fact piece-wise linear. There are two candidates for the tangent
plane to the graph of f at (x, y, z) = (0, 0, f(0, 0)) = (0, 0, 0). Namely the planes
z = x + y and z = x − y. These planes are however not equal. The function f is
hence not differentiable at (x, y) = (0, 0).



2. (a) Let g : R3 → R3 be defined as

g(x, y, z) = x2 + 2y2 − 6x− z + 10

for (x, y, z) ∈ R3. Then S is the zero-level set of g. For the gradient of g, we get

∇g(x, y, z) = (2x− 6, 4y,−1)

which at (x0, y0, z0) = (4, 1, 4) is

∇g(4, 1, 4) = (2, 4,−1).

The tangent plane of S at (x0, y0, z0) = (4, 1, 4) is hence given by the equation

∇g(x0, y0, z0) · (x− x0, y − y0, z − z0) = 0

⇔(2, 4,−1) · (x− 4, y − 1, z − 4) = 0

⇔2x+ 4y − z = 8.

(b) We have
∂g

∂x
(x0, y0, z0) = 2 6= 0.

By the Implicit Function Theorem there exists a neighborhood U ⊂ R2 of (y0, z0) ∈
R2, a neighborhood V ⊂ R of x0 ∈ R and a function f : U → R with such that for
(y, z) ∈ U and x ∈ V ,

g(x, y, z) = 0⇔ x = fy, z).

Moreover

fy(x0, z0) = −gy(x0, y0, z0)
gx(x0, y0, z0)

= −4

2
= −2

and

fz(x0, z0) = −gz(x0, y0, z0)
gx(x0, y0, z0)

= −−1

2
=

1

2
.

The linearization of f at (y0, z0) is

L(x, z) = f(y0, z0) + fy(y0, z0)(y − y0) + fz(y0, z0)(z − z0) = 4− 2(y − 1) +
1

2
(z − 4).

The graph of L is

x = 4− 2(y − 1) +
1

2
(z − 4)⇔ 2x+ 4y − z = 8.

which agrees with the equation for the tangent plane found in part (a).

3. (a) The line segment C from A to B has the parametrization r(t) = (t, t, t) with t ∈ [0, 1].
The line integral is then given byˆ 1

0
F(r(t)) · r′(t) dt =

ˆ 1

0
((at2 − t3) i + (a− 2)t2 j + (1− a)t3 k) · (i + j + k) dt

=

ˆ 1

0
(at2 − t3 + (a− 2)t2 + (1− a)t3) dt

=

ˆ 1

0
((2a− 2)t2 − at3) dt

=

[
2a− 2

3
t3 − a

4
t4
]t=1

t=0

=
2a− 2

3
− a

4
.



(b) For F to be conservative the curl of F has to vanish. We have

∇× F(x, y, z) =

∣∣∣∣∣∣
i j k
∂x ∂y ∂z

axy − z3 (a− 2)x2 (1− a)xz2

∣∣∣∣∣∣
= (∂y(1− a)xz2 − ∂z(a− 2)x2) i +(

∂z(axy − z3)− ∂x(1− a)xz2
)
j +(

∂x(a− 2)x2 − ∂y(axy − z3)
)
k

= 0 i +
(
− 3z2 − (1− a)z2

)
j +

(
2(a− 2)x− ax

)
k.

Equating this to zero gives a = 4.

(c) Let f denote the potential function. Then f satisfies the equations

fx = 4xy − z3, (1)

fy = 2x2, (2)

fz = −3xz2. (3)

Integrating Eq. (1) with respect to x gives

f(x, y, z) = 2x2y − xz3 + g(y, z),

where g(y, z) is a integration constant which can dependent on y and z. Differentiating
with respect to y and using Eq. (2) yields

2x2 + gy(y, z) = 2x2,

i.e., gy(y, z) = 0. So g does not dependent on y and is hence of the form g(y, z) = h(z)
for some function h : R→ R. So f(x, y, z) = 2x2y − xz3 + h(z). Differentiating with
respect to z and using Eq. (3) yields

−3xz2 + h′(z) = −3xz2

which gives h′(z) = 0, i.e. h is constant. So the potential function is

f(x, y, z) = 2x2y − xz3 + c

with c ∈ R.

(d) According to the Fundamental Theorem for Line Integrals the line integral is given
by f(B) − f(A) = f(1, 1, 1) − f(0, 0, 0) = (2 − 1) − 0 = 1, where f is the potential
function computed in part (c). This agrees with the result found in part (a) for a = 4.

4. We start by computing the flux on the left hand side of Stokes’ equality. The curl of F is

∇× F(x, y, z) =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

2z − y x+ z 3x− 2y

∣∣∣∣∣∣
= (−2− 1) i− (3− 2) j + (1− (−1))k

= −3 i− 1 j + 2k.



Let D ⊂ R2 be the disk of radius 3 centered at the origin. We can then parametrize S by
X : D → R3, (x, y) 7→ X(x, y) with

X(x, y) = (x, y, 9− x2 − y2).

Then
Xx(x, y) = (1, 0,−2x) and Xy(x, y) = (0, 1,−2y)

which gives
Xx ×Xy = (2x, 2y, 1)

which is a normal vector consistent with the given orientation of S. Hence
¨
S

(∇× F) · dS =

¨
D

(∇× F)(X) · (Xx ×Xy)dA

=

¨
D

(−3,−1, 2) · (2x, 2y, 1)dA

=

¨
D

(−6x− 3y + 2)dA.

As by symmetry
˜
D −6xdA =

˜
D −3ydA = 0 we get that

˜
S(∇× F) · dS = 2 times the

are of a disk of radius 3 which gives 2π32 = 18π.

We now compute the line integral on the right hand side of Stokes’ equality. The boundary
∂S is the circle of radius 3 in the (x, y)-plane centered at the origin and can be parametrized
by

r(t) = (3 cos t, 3 sin t, 0)

with t ∈ [0, 2π]. The tangent vector r′(t) = (−3 sin t, 3 cos t, 0) defines an orientation on
∂S that is consistent with the orientation induced by the orientation on S.

Hence
˛
∂S

F · ds =

ˆ 2π

0
F(r(t)) · r′(t) dt.

Using

F(r(t)) = (−3 sin t, 3 cos t, 3 cos t− 6 sin t)

we get

˛
∂S

F · ds =

ˆ 2π

0
(−3 sin t, 3 cos t, 3 cos t− 6 sin t) · (−3 sin t, 3 cos t, 0) dt

=

ˆ 2π

0
(9 sin2 t+ 9 cos2 t) dt

=

ˆ 2π

0
9 dt

= 18π

which agrees with left hand side of Stokes’ equality computed above.


